已知双曲线x2a2-y2b2=1 (a>0,b>0)的离心率为e=2,过双曲线上一点M作直线MA,MB交双I can get up enough nerve to do this
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 18:10:32
已知双曲线x2a2-y2b2=1 (a>0,b>0)的离心率为e=2,过双曲线上一点M作直线MA,MB交双I can get up enough nerve to do this
已知双曲线x2a2-y2b2=1 (a>0,b>0)的离心率为e=2,过双曲线上一点M作直线MA,MB交双
I can get up enough nerve to do this
已知双曲线x2a2-y2b2=1 (a>0,b>0)的离心率为e=2,过双曲线上一点M作直线MA,MB交双I can get up enough nerve to do this
你好像问题没写完吧,还有你那句英文你是我能鼓足勇气去做这件事什么意思啊
3,公式就是 k1*k2=a的平方分之b的平方
已知双曲线x2a2-y2b2=1 (a>0,b>0)的离心率为e=2,过双曲线上一点M作直线MA,MB交双I can get up enough nerve to do this
已知双曲线x2a2-y2b2=1 (a>0,b>0)的离心率为e=2,过双曲线上一点M作直线MA,MB交双曲线于A,B两点,且斜率分别为k1,k2,若直线AB过原点O,则k1·k2=
如图.己知斜率为1的直线l与双曲线C:x2a2-y2b2=1(a>0,b>0)相交于B、D两点,且BD的中点为M(1,3).
已知双曲线C:x2a2-y2b2=1(a>0,b>0)的右焦点为F,过F且倾角为30°的直线l与双曲线的左、右两支分别相交于A、B两点.设|AF|=λ|BF|,若2≤λ≤3,求双曲线C的离心率e的取值范围.
设椭圆C:x2a2+y2b2=1(a>b>0)的左焦点为F,上顶点为A,过点A与AF垂直的直线分别交椭设椭圆C: x2a2+ y2b2=1(a>b>0)的左焦点为F,上顶点为A,过点A与AF垂直的直线分别交椭圆C与x轴正半轴于点P、Q,
如图,在平面直角坐标系xOy中,点A为椭圆E:x2a2+y2b2=1 (a>b>0)的左顶点,B,C在椭圆E上,若四边形OABC为平行四边形,且∠OAB=30°,则椭圆E的离心率等于 多少?
若椭圆x2a2+y2b2=1(a>b>0)与曲线x2+y2=a2-b2恒有公共点,则椭圆的离心率e的取值范围
设椭圆x2a2+y2b2=1(a>b>0)的左,右两个焦点分别为F1,F2,短轴的上端点为B,短轴上的两个三等分点为P,Q,且F1PF2Q为正方形.若过点B作此正方形外接圆的切线在x轴上的一个截距为-(4.2/4),求此椭圆
已知椭圆x2/a2+y2b2=1(a>b>0)的两个焦点为F1、F2,M是椭圆上的一点,且∠F1MF2=α,求△F1MF2的面积.如题.
椭圆方程为x2a2+y2b2=1(a>b>0)的一个顶点为A(0,2),离心率e=63.(1)求椭圆的方程; (2)直线l:y=kx-2椭圆方程为x2/a2+y2/b2=1(a>b>0)的一个顶点为A(0,2),离心率e=根号6/3(1)求椭圆的方程;(2)直线l
高中数学的提,不会做啦 帮忙一下6.(2010•山东济南)设F1、F2分别为椭圆x2a2+y2b2=1的左、右焦点,c=a2-b2,若直线x=a2c上存在点P,使线段PF1的中垂线过点F2,则椭圆离心率的取值范围是(
线性代数问题:设A=(a1,a2,.,am)其中ai(i=1,2,...,m)为n维列向量,已知对任意不全为0的数x1,x2,...xm,都有x1a1+x2a2+...+xmam不等于0,则必有()我想问,为什么则必有存在n接可逆矩阵P,使得PA=(Em O )(这是
已知双曲线有a=b,并且经过点A(3,1),求双曲线的标准方程
在平面直角坐标系中,已知焦距为4的椭圆C:x2a2 +y2 b2 =1 (a>b>0)的左、右顶点分别为A、B,椭圆的右焦点为F,过F作一条垂直于x轴的直线与椭圆相交于R,S,若线段RS的长为3分之101、求椭圆的方程 2
已知双曲线x^2/4-y^2=1,P是双曲线上一点,求证:P点到双曲线两条渐近线已知双曲线x^2/4-y^2=1,P是双曲线上一点1 求证:P点到双曲线两条渐近线的距离的乘积是一个定值2 已知点A(3,0),求|PA|的最小
已知点A(a,1),B(-1,b)都在双曲线y=-3/x(x
已知双曲线x^2/a^2-y^2/b^2=1(a>0b
已知双曲线a^2|x^2-b^2|y^2=1(a>0,b