设Sn是等比数列的前n项和,若S3,S9,S6成等差数列,这an的公比q为多少

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 21:06:44

设Sn是等比数列的前n项和,若S3,S9,S6成等差数列,这an的公比q为多少
设Sn是等比数列的前n项和,若S3,S9,S6成等差数列,这an的公比q为多少

设Sn是等比数列的前n项和,若S3,S9,S6成等差数列,这an的公比q为多少
S3=a1(1-q³)/(1-q),S9=a1(1-q^9)/(1-q),S6=a1(1-q^6)/(1-q),2S9=S3+S6,
2a1(1-q^9)/(1-q)=a1(1-q³)/(1-q)+a1(1-q^6)/(1-q),2q^9=q³+q^6,2q^6=1+q³,(q³-1)(2q³+1)=0
q³=1或q³=-1/2,an的公比取q=-(1/2)^(1/3).

当q=1时,S3=3a1,S9=9a1,S6=6a1,
∵2S9≠S3+S6,∴S3,S9,S6不成等差数列,与已知矛盾,
∴q≠1.(2分)
由2S9=S3+S6得:2•a1(1-q9) 1-q =a1(1-q3) 1-q +a1(1-q6) 1-q ,(4分)
即2(1-q9)=(1-q3)+(1-q6)⇒2q6-q3-1=0,
...

全部展开

当q=1时,S3=3a1,S9=9a1,S6=6a1,
∵2S9≠S3+S6,∴S3,S9,S6不成等差数列,与已知矛盾,
∴q≠1.(2分)
由2S9=S3+S6得:2•a1(1-q9) 1-q =a1(1-q3) 1-q +a1(1-q6) 1-q ,(4分)
即2(1-q9)=(1-q3)+(1-q6)⇒2q6-q3-1=0,
∴q3=-1 2 ⇒q=-3 根号1 /2 ,q3=1⇒q=1(舍去),∴q=-3根号 4 / 2

收起