己知z=f(u),u=ψ(u)+∫(y,x) p(t)dt,其中f(u)可微,p(t),ψ(u)连续,且ψ'(u)≠1, 求p(x)·dz/dy+p(y)·dz/d
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 15:23:38
己知z=f(u),u=ψ(u)+∫(y,x) p(t)dt,其中f(u)可微,p(t),ψ(u)连续,且ψ'(u)≠1, 求p(x)·dz/dy+p(y)·dz/d
己知z=f(u),u=ψ(u)+∫(y,x) p(t)dt,其中f(u)可微,p(t),ψ(u)连续,且ψ'(u)≠1, 求p(x)·dz/dy+p(y)·dz/d
己知z=f(u),u=ψ(u)+∫(y,x) p(t)dt,其中f(u)可微,p(t),ψ(u)连续,且ψ'(u)≠1, 求p(x)·dz/dy+p(y)·dz/d
u=ψ(u)+∫(y,x) p(t)dt两边全微分
du=ψ'(u)du+p(x)dx-p(y)dy
整理
du={p(x)/[1-ψ'(u)]}dx-{p(y)/[1-ψ'(u)]}dy
得到
du/dx=p(x)/[1-ψ'(u)]
du/dy=-p(y)/[1-ψ'(u)]
又因为
dz/dy=[dz/du][du/dy]
dz/dx=[dz/du][du/dx]
则
p(x)·dz/dy+p(y)·dz/dx
={-p(x)p(y)/[1-ψ'(u)]+p(y)p(x)/[1-ψ'(u)]}[dz/du]
=0
己知z=f(u),u=ψ(u)+∫(y,x) p(t)dt,其中f(u)可微,p(t),ψ(u)连续,且ψ'(u)≠1, 求p(x)·dz/dy+p(y)·dz/d
已知x/(y+z+u)=y/(z+u+x)=z/(u+x+y)=u/(x+y+z)求(x+y)/(z+u)+(y+z)/(x+u)+(z+u)/(x+y)+(u+x)/(y+z)
设z=f(u),方程u=g(u)+∫ (上限x.下限y)p(t)dt确定u是x,y的函数,其中f(u),g(u)可微,p(t),g'(u)连续,且g'(u)≠1,求p(y)δz/δx+p(x)δz/δy
设z=f(u),方程u=g(u)+∫ (上限x.下限y)p(t)dt确定u是x,y的函数,其中f(u),g(u)可微,p(t),g'(u)连续,且g'(u)≠1,求p(y)δz/δx+p(x)δz/δy
z=f(u) u=x/y,求x*∂z/∂x +y*z∂z/∂y
关于偏导数的一道题设函数z=f(u),其中u由方程u=φ(u)+∫ (上x下y) p(t)dt 确定为x,y的函数,且f(u),φ(u),p(x)可微,φ(u)的导数不等于1,证明:p(y)∂z/∂x+p(x)∂z/∂y=0
x/(y+z+u)=y/(z+u+x)=z/(u+y+x)=u(x+y+z)求(x+y)/(z+u)+(y+z)/(y+x)+(z+y)/(x+y)+(u+x)/(z+y)
设f(t)为连续函数,u(x,y,z)=∫xz yz f(t)dt,试求δu/δx,δu/δy,δu/δz
求u=x^y^Z偏导数 分别求u对x,u对y,u对z
设函数f(u)具有二阶导数,而z=f((e^x)*sin(y))满足方程d^2(z)/d^2(x^2)+d^2(z)/d(y^2)=e^(2*x)*z,求f(u).令u=e^x*siny,则z=f(u)∂z/∂x=∂z/∂u*∂u/∂x=f'(u)*e^x*siny=uf'(u),∂²z/∂x²=∂(u
设函数z=f(u) u=x^2+y^2 且f(u)二阶可导 则∂^2*z/∂x^2=?
求全微分 u=x^y^z
z=f(u,x,y),u=xe^y,f具有连续的二阶偏导数,求az/ax
f u c k y o u= =
设F为三元可微函数,u=u(x,y,z)是由方程F(u^2-x^2,u^2-y^2,u^2-z^2)=0确定的隐函数,求证(u对x的偏导)/x+(u对y的偏导)/y+(u对z的偏导)/z=1/u...我算出来左边的部分等于1/(2u)...跪了...
设函数u=u(x,y),由方程组u=f(x,y,z,t),g(y,z,t)=0,h(z,t)=0定义,求u对y的偏导
设函数Z=f(u),u=x平方+Y平方且f(u)二阶导数,则偏x偏y是多少?
z=f(u,v)=u^2-v^2,u=x+y,v=xy.求z对x的偏导.