∫0-1/2 arccosx^1/2dx,定积分

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 15:36:51

∫0-1/2 arccosx^1/2dx,定积分
∫0-1/2 arccosx^1/2dx,定积分

∫0-1/2 arccosx^1/2dx,定积分

 
若有不懂请追问,如果解决问题请点下面的“选为满意答案”.

用分步积分
∫[0,1/2] arccosx^1/2dx
=xarccos√x[0,1/2]-∫[0,1/2] xdarccos√x
=π/8+∫[0,1/2] x/√(1-x)dx
=π/8+∫[0,1/2] (x-1+1)/√(1-x)dx
=π/8+∫[0,1/2] [-√(1-x)+1/√(1-x)]dx
=π/8+[2/3(1-x)^(3/2)-2√(1-x)[0,1/2]
=π/8+√2/6-√2/2-2/3+2
=π/8+√2/3+4/3