设z=xyf(y/x),f(u)可导,求x乘以(偏z/偏x)+y乘以(偏z/偏y)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 09:26:54
设z=xyf(y/x),f(u)可导,求x乘以(偏z/偏x)+y乘以(偏z/偏y)
设z=xyf(y/x),f(u)可导,求x乘以(偏z/偏x)+y乘以(偏z/偏y)
设z=xyf(y/x),f(u)可导,求x乘以(偏z/偏x)+y乘以(偏z/偏y)
z=xyf(y/x)
∂z/∂x=yf(y/x)+xyf'(y/x)(-y/x^2)=yf(y/x)-f'(y/x)(y^2/x)
∂z/∂y=xf(y/x)+xyf'(y/x)(1/x)=xf(y/x)+yf'(y/x)
所以:x∂z/∂x+y∂z/∂y
=x(yf(y/x)-f'(y/x)(y^2/x))+y(xf(y/x)+yf'(y/x))
=2xyf(y/x)=2z
2z
设Z=y/f(x^2-y^2),其中f(u)为可导函数求δz/δxδz/δx为什么是2xyf'/f² 而不是-2xyf'/f²
设z=xyf(y/x),f(u)可导,求x乘以(偏z/偏x)+y乘以(偏z/偏y)
设z=xyf(y/x),f(u)可导,求x(аz/аx)+y(аz/аx)
设z=xyf(x+y),其中f(u)二阶可导,求Φz/Φx,Φz/Φy(偏导)
设 z=xyf(y/x),f(u)可导,则xZ'x+yZ'y=?(Z'x表示对x求导)
带函数的偏导z=xyf(y/x) 其中f(u)可导,求x(əz/əx)+y(əz/əy)含有这种 f 函数的 怎么求
设u=xyf((x+y)/xy),f(t)可微,且满足x^2U'z-y^2U'y=uG(x,y)则G(x,y)=?
抽象复合函数求偏导题!设z=xyf(x/y,y/x),其中f具有一阶连续偏导,求∂z/∂x.
设z=xyf(x+y,e^x siny),其中f具有一阶连续偏导数,求Zx,Zy
已知方程z+x=yf(x^2-z^2)确定了函数z=z(x,y),其中f(u)可导,求az/ax,az/ay答案是az/ax=(2xyf'-1)/(1+2yzf')az/ay=f/(1+2yzf')想不通怎么还会出现分母啊。
设f(u,v)可微,z=(x,y)由方程F(x+z/y,y+z/x)=0所确定,求z
设z=f(x^(x+y),x/y),其中f(u,v)为可微函数求∂z/∂x,∂z/∂y
设f(u,v)为二元可微函数,z=f(x^y,y^x),求x,y的偏导
设z=y/f(x*2-y*2),其中f(u)可微分,求δz/δx,δz/δy.
设f(u,v)可微,z=f(x^y,y^x),则dz=
设z=xy+x^2F(u),u=y/x,F(u)可导,证明x(偏z/偏x)+y(偏z/偏y)=2z
设z=f(x^2,y,y/x)可导,求δz/δx,δz/δy
啊 不会啊! 设z=f(y/x),其中f(u)为可导函数,证明:x(αz/αx)+y(αz/αy)=0求高手指点啊!