构造函数f﹙x﹚、g﹙x﹚,其定义域为﹙0,1﹚,值域为[0,1].﹙1﹚对于任意a∈[0,1],f﹙x﹚=a只有一解试构造函数f﹙x﹚、g﹙x﹚,其定义域为﹙0,1﹚,值域为[0,1].﹙1﹚对于任意a∈[0,1],f﹙x﹚=a只有一
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 09:40:28
构造函数f﹙x﹚、g﹙x﹚,其定义域为﹙0,1﹚,值域为[0,1].﹙1﹚对于任意a∈[0,1],f﹙x﹚=a只有一解试构造函数f﹙x﹚、g﹙x﹚,其定义域为﹙0,1﹚,值域为[0,1].﹙1﹚对于任意a∈[0,1],f﹙x﹚=a只有一
构造函数f﹙x﹚、g﹙x﹚,其定义域为﹙0,1﹚,值域为[0,1].﹙1﹚对于任意a∈[0,1],f﹙x﹚=a只有一解
试构造函数f﹙x﹚、g﹙x﹚,其定义域为﹙0,1﹚,值域为[0,1].
﹙1﹚对于任意a∈[0,1],f﹙x﹚=a只有一解
﹙2﹚对于任意a∈[0,1],g﹙x﹚=a有无穷多个解
第二个g(X)已解决,但也希望看下,大家会提供什么好的函数.第一个不是分段函数,也不连续,正确的话,
构造函数f﹙x﹚、g﹙x﹚,其定义域为﹙0,1﹚,值域为[0,1].﹙1﹚对于任意a∈[0,1],f﹙x﹚=a只有一解试构造函数f﹙x﹚、g﹙x﹚,其定义域为﹙0,1﹚,值域为[0,1].﹙1﹚对于任意a∈[0,1],f﹙x﹚=a只有一
f(x)其实是从(0,1)到[0,1]的一一映射(跟证明(0,1)与[0,1]中的点一样多等价)
取子序列1/2 ,1/4 ,1/8 ...1/2^n ...
与 0 ,1 ,1/2 ,1/4 ,...进行对应,而其他的点不变,则构成从(0,1)到[0,1]的一一映射f
显然f满足条件.
g(x) = sin(1/x),D = (0,1)
则值域[0,1],对于任意a∈[0,1],g﹙x﹚=a有无穷多个解
构造f(x):
令f(1/3)=0, f(2/3)=1.
当n>=4时,令f(1/n)=1/(n-1), f(1-1/n)=1-1/(n-1).
即f(1/4)=1/3, f(3/4)=2/3 等等.
当x取其余值的话f(x)=x.
此时显然值域为[0, 1].
对任意a∈[0,1],若a不等于0、1、1/3、2/3、1/4、3/4……时,只有f(a...
全部展开
构造f(x):
令f(1/3)=0, f(2/3)=1.
当n>=4时,令f(1/n)=1/(n-1), f(1-1/n)=1-1/(n-1).
即f(1/4)=1/3, f(3/4)=2/3 等等.
当x取其余值的话f(x)=x.
此时显然值域为[0, 1].
对任意a∈[0,1],若a不等于0、1、1/3、2/3、1/4、3/4……时,只有f(a)=a,有唯一解;
若a=0,f(1/3)=0是唯一解;若a=1,f(2/3)=1是唯一解;
若a=1/n,n>=3,有f(1/(n+1))=1/n,而f(1/m)(m不等于n)、f(1-1/m)、f(1/n)都不等于1/n,
因此f(1/(n+1))=1/n也是唯一解;
同理可证a=1-1/n,n>=3也有唯一解。
收起