有12个硬币,其中一个硬币的重量不一样,但是你不知道它到底是轻一点还是重一点.给你一个天平,只能用3次,把那颗硬币找出来.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 23:38:58

有12个硬币,其中一个硬币的重量不一样,但是你不知道它到底是轻一点还是重一点.给你一个天平,只能用3次,把那颗硬币找出来.
有12个硬币,其中一个硬币的重量不一样,但是你不知道它到底是轻一点还是重一点.给你一个天平,只能用3次,把那颗硬币找出来.

有12个硬币,其中一个硬币的重量不一样,但是你不知道它到底是轻一点还是重一点.给你一个天平,只能用3次,把那颗硬币找出来.
先标注1-12 第一次{1+2+3+4}比较{5+6+7+8}
如果相等,第二次{9+10}比较{(1)+11}
如果相等,证明是12硬币不规则,第三次和任意硬币比较,12或者重或者轻两种可能
如果{9+10}>{(1)+11}
第三次9比较10,如果9>10并且{9+10}>{(1)+11}证明是9重
同理如果9 同理如果9=10,证明是11轻
如果{9+10} 第三次9比较10,如果9>10并且{9+10} 如果9 如果9=10,证明是11重
至此刚好8种可能;
如果{1+2+3+4}>{5+6+7+8}
第二次{1+2+5}比较{3+6+(9)}(关键把其中3,5硬币的位置交换)
如果相等,证明1,2,3,5,6为规则硬币,不规则硬币在4,7,8中(见说明2)
第三次7比较8,如果7=8并且{1+2+3+4}>{5+6+7+8}证明是4重
如果7 如果7>8,证明是8轻
如果{1+2+5}>{3+6+(9)}
证明3,5,4,7,8为规则硬币,不规则硬币在1,2,6中
第三次1比较2,如果1=2并且{1+2+5}>{3+6+(9)}证明是6轻
如果1>2,证明是1重
如果1 如果{1+2+5} 证明不规则硬币在3,5中(因为位置变化天平变化)
第三次随便比较1与3,如果1=3,证明是5轻
如果1 1>3不可能,因为已经有第一次{1+2+3+4}>{5+6+7+8}
这样刚好也是8种可能

一次天平两边放两枚硬币,

第一次,一边放6个,得到轻的一组,重的一组。
第二次,上选一组一边放3个,得到的如果是平衡,那么另一组就是有不一样硬币的一组,如果不平衡那就这组里有,你可以知道,你是从轻的里选的那组还是重的那里选的那组得到的不一样的硬币的,那么就可以判断知道,硬币是轻还是重了。
第三次,你从上边可以得到唯一的一组3个,用天平称任意2个,如果平衡则是另一个没称的有质量问题,如果向一方倾斜,那么你已经...

全部展开

第一次,一边放6个,得到轻的一组,重的一组。
第二次,上选一组一边放3个,得到的如果是平衡,那么另一组就是有不一样硬币的一组,如果不平衡那就这组里有,你可以知道,你是从轻的里选的那组还是重的那里选的那组得到的不一样的硬币的,那么就可以判断知道,硬币是轻还是重了。
第三次,你从上边可以得到唯一的一组3个,用天平称任意2个,如果平衡则是另一个没称的有质量问题,如果向一方倾斜,那么你已经知道哪个硬币是轻还是重了,也可以判断哪个是有质量问题的硬币。
如果没看明白,hi我给你讲。

收起

分成4堆,分别为A、B、C、D,各三个
先称A与B、再称A与C:
A=B | A=C --> 在D堆
| A<>C ==> 在C堆
A<>B | A=C --> 在B堆
| A<>C ==> 在A堆
此时已经知道硬币在哪一堆了,同时知道是轻一点还是重一点
将其中2个硬币称一下:

全部展开

分成4堆,分别为A、B、C、D,各三个
先称A与B、再称A与C:
A=B | A=C --> 在D堆
| A<>C ==> 在C堆
A<>B | A=C --> 在B堆
| A<>C ==> 在A堆
此时已经知道硬币在哪一堆了,同时知道是轻一点还是重一点
将其中2个硬币称一下:
相等,则为剩下的那个
不相等,则根据上述已知的偏轻、或偏重,可得

收起

你把12个硬币先分成两份,6个一份,分别放在天平的两个托盘里,重的6个留下,再把留下的6个硬币分成两份,3个一份分别放在天平上,重的3个留下,在这3个中随你挑哪两个放在天平上(一个托盘放一个硬币),重的留下,如果一样重的话,就是你没挑的那个硬币是重的!...

全部展开

你把12个硬币先分成两份,6个一份,分别放在天平的两个托盘里,重的6个留下,再把留下的6个硬币分成两份,3个一份分别放在天平上,重的3个留下,在这3个中随你挑哪两个放在天平上(一个托盘放一个硬币),重的留下,如果一样重的话,就是你没挑的那个硬币是重的!

收起

图示
①②③④ ̄△ ̄⑤⑥⑦⑧不平衡则在这8个内,并记下倒向,不然是⑨⑩⑾⑿
之一
在8个之中就以下列之法:
①②⑤ ̄△ ̄③⑥④不平衡则在这6个内,并记下倒向,如和上次一样,则是①②⑥之一,不一样则是③④⑤,平衡则是⑦⑧
第三步不用说了吧
不在8个之中就以下列之法:
⑨ ̄△ ̄⑩平衡,则是⑾⑿
...

全部展开

图示
①②③④ ̄△ ̄⑤⑥⑦⑧不平衡则在这8个内,并记下倒向,不然是⑨⑩⑾⑿
之一
在8个之中就以下列之法:
①②⑤ ̄△ ̄③⑥④不平衡则在这6个内,并记下倒向,如和上次一样,则是①②⑥之一,不一样则是③④⑤,平衡则是⑦⑧
第三步不用说了吧
不在8个之中就以下列之法:
⑨ ̄△ ̄⑩平衡,则是⑾⑿
不平衡,则是⑨⑩
第三步不用说了

收起

12个硬币假定编号如下:1、2、3、4、5、6、7、8、9、10、11、12
分为三组,每组四枚。即1234一组,5678一组,另四个一组。
第一次称:1、2、3、4 与5、6、7、8 比较。
假设左侧重,则1、2、3、4中有个重的或者5、6、7、8中有个轻的,并且9、10、11、12是标准的;
第二次称:1、9、10、11 | 3、4、7、8
如果右...

全部展开

12个硬币假定编号如下:1、2、3、4、5、6、7、8、9、10、11、12
分为三组,每组四枚。即1234一组,5678一组,另四个一组。
第一次称:1、2、3、4 与5、6、7、8 比较。
假设左侧重,则1、2、3、4中有个重的或者5、6、7、8中有个轻的,并且9、10、11、12是标准的;
第二次称:1、9、10、11 | 3、4、7、8
如果右侧重,则第三次:3 | 9,如果左重,则要找的为3号硬币且3号硬币重,如果平衡则要找的球是4号硬币且4号硬币重;
如果左侧重,则1号硬币重或者7、8号硬币中有一个为轻,则第三次:1、7 | 9、10,如果左侧重,则要找的是1号硬币,如果右侧重,则要找的是7号硬币,如果平衡则要找的是8号硬币;
如果平衡,则2号硬币重或者5、6号硬币轻,则第三次:2、5 | 9、10,如果左侧重,则要找的是2号硬币,如果右侧重,则要找的是5号硬币,如果平衡则要找的是6号硬币。
第一次称后如果右侧重,则同上描述。
第一次称后如果平衡,则
第二次:9 | 10,如果不平衡,则第三次:9 | 1,如果不平衡则为9,否则为10,
如果上面第二次平衡,则第三次:11 | 1,如果平衡则为12,如果不平衡则为11。

收起

有12个硬币,其中一个硬币的重量不一样,但是你不知道它到底是轻一点还是重一点.给你一个天平,只能用3次,把那颗硬币找出来. 有个小学五年纪的数学题要问有12个同面额的硬币,其中有一个假的,这个假币与其他11个真硬币的重量不一样,请用天平3次将它找出来,希望有高手能答出来 希望大家能及早给出答案有一个天平以及12个硬币 其中有一个硬币是假的 重量与真的硬币不同 但不知道是略重还是略轻 要求称三次 将假的硬币找出 一个一元硬币的重量? 小明的储蓄罐里有20个1元硬币,35个5角硬币,50个1角硬币,至少要从中取出多少个硬币,才能保证其中有一个1元硬币 小明的储蓄罐里有20个1元硬币,35个5角硬币,50个1角硬币,至少要从中取出多少个硬币,才能保证其中有一个 萧婉有64个硬币其中包括0.20和0.50的硬币.总量是23.90.有多少硬币0.20她有? 有12个硬币,其中有一个假的(不知道是比真的硬币重还是轻),现在用天平(没砝码)称3次以内知道那个假有12个硬币,其中有一个是假的(不知道是不真的硬币重些还是轻些),现在有一个天 现有2分硬币和5分硬币各若干个,其中2分硬币比5分硬币多24个,如果把2分硬币等价换成5分硬币,所得的5分硬币要比原有的5分硬币少6个,原来的2分硬币有_____个?5分硬币有_____个? 智力测试题 说出答案并作出解释 3Q~~一、“9个硬币,有一个重量和其他的不一样,你用两只手,最多几次可以找出这枚特殊的硬币?”二、“还是9枚硬币,改变其中的一个条件,两次就可以找出这 有两个相同大小的硬币,其中一个硬币绕另一个硬币的边缘滚动一圈为什么硬币自转了2圈? 一个商人有12枚硬币,其中有一枚是假硬币.你能用天平(假硬币不知轻重)将假硬币找出来吗? 一位商人有9个硬币,其中有一个硬币是假的,比其他8个轻一些,给他一个天平(无砝码)问:他怎样才能只称两次就取出假硬币? 有7个外观一样的硬币,其中一个假币比真币要重些,用天平称的办法去找,至少几次能比硬币找出来?请写出过 有20个1元硬币35个5角硬币50个1角硬币,至少要从中取出多少个硬币,才能保证其中至至少有一个1元的硬币?这时一共取出了多少元钱? 现有2分硬币和5分硬币各若干个,共有1.32元.其中2分硬币比5分硬币多24个,问5分硬币有几个?要有算式.谢谢你们.很急的. 辨硬币(数学)12枚硬币中有1个假硬币.不知道假硬币比真硬币轻还是重.请用1个无砝码的天平称3次辨哪个是假硬币 一道智力题,有12个硬币,其中1个与其它的重量不同.现在有一台没有法码的天平,请在称量三次之内把那个重量不同的找出来.3楼的,现在只是知道有一个与其它重量不同。在第一次称了6:6后