设3阶矩阵A的各行元素之和都为2,向量α1=(-1,1,1)T,α2=(2,-1,1)T是齐次线性方程组AX=0的解求A
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 10:44:08
设3阶矩阵A的各行元素之和都为2,向量α1=(-1,1,1)T,α2=(2,-1,1)T是齐次线性方程组AX=0的解求A
设3阶矩阵A的各行元素之和都为2,向量α1=(-1,1,1)T,α2=(2,-1,1)T是齐次线性方程组AX=0的解
求A
设3阶矩阵A的各行元素之和都为2,向量α1=(-1,1,1)T,α2=(2,-1,1)T是齐次线性方程组AX=0的解求A
设3阶矩阵A的各行元素之和都为2,向量α1=(-1,1,1)T,α2=(2,-1,1)T是齐次线性方程组AX=0的解求A
设A是秩为1的3阶实对称矩阵,且A的各行元素之和均为2,则A的特征值为?
设A是n阶矩阵,|A|=2,且A中各行元素之和均为1,求A中毎列元素的代数余子式之和
设3阶矩阵A的各行元素之和均为0,且r(A)=2,则 AX+0的通解为
一道大学线性代数题求详解设3阶实对称矩阵A的各行元素之和均为3,向量α1=[-1,2,-1]T和α2=[0,-1,1]T是齐次线性方程组AX=0的两个解.(1)求A的特征值和特征向量;(2)求一个正交矩阵Q和对角矩阵
已知3阶实对称矩阵A的各行元素之和为4,向量a(-4,2,2)^T是齐次线性方程组Ax=0的解,且矩阵A的对角元素之和为-1,则(1)矩阵A的特征值为?(2)属于特征值的特征向量分别为?(3)矩阵A等于?思路
已知3阶实对称矩阵A的各行元素之和为4,向量a(-4,2,2)^T是齐次线性方程组Ax=0的解,且矩阵A的对角元素之和为-1,则(1)矩阵A的特征值为?(2)属于特征值的特征向量分别为?(3)矩阵A等于?
设n阶矩阵A的各行元素之和为0,且其秩为n-1,x是n维列向量,则齐次线性方程组的Ax=0的通解.如标题
设3×4矩阵A的各行元素之和为零,且A的3行向量线性无关,则齐次线性方程组AX=0的通解是x=
n阶方阵A各行元素之和为n,A^2各行元素之和都等于多少
设n阶矩阵A的各行元素之和均为零,且A的秩为n-1,则线性方程组Ax=0的通解为?
设N阶矩阵A的各行元素之和均为零,且R(A)=N-1,则线性方程组AX=0的通解为?
设非奇异矩阵A的各行元素之和为2,则矩阵(1/3A^2)^-1有一个特征值等于( ) (A)4/3; (B)3/4;
线性代数:(设3阶实对称矩阵A的各行元素和均为3,)设3阶实对称矩阵A的各行元素和均为3,向量a1=(-1,2,-1)T,a2=(0,-1,1)T是AX=0的两个解,求A的特征值和特征向量我的疑问是:3是矩阵A的特征值我是
线性代数:(设3阶实对称矩阵A的各行元素和均为3)设3阶实对称矩阵A的各行元素和均为3,向量a1=(-1,2,-1)T,a2=(0,-1,1)T是AX=0的两个解,求A的特征值和特征向量我的疑问是:3是矩阵A的特征值我是
设A是3阶实对称矩阵,且各行元素之和都是5,则A必有特征向量?
求助:设A是3阶实对称矩阵,且各行元素之和都是5,则A必有特征向量?
设A是3阶实对称矩阵,且各行元素之和都是5,则A必有特征向量?