已知向量OP=(2,1)OA=(1,7)OB=(5,1),设X是直线OP上的一点,O为坐标原点,那么向量XA*XB的最小值
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 09:34:34
已知向量OP=(2,1)OA=(1,7)OB=(5,1),设X是直线OP上的一点,O为坐标原点,那么向量XA*XB的最小值
已知向量OP=(2,1)OA=(1,7)OB=(5,1),设X是直线OP上的一点,O为坐标原点,那么向量XA*XB的最小值
已知向量OP=(2,1)OA=(1,7)OB=(5,1),设X是直线OP上的一点,O为坐标原点,那么向量XA*XB的最小值
∵X是直线OP上的点,则设X(2λ,λ)
即有XA(1-2λ,7-λ),XB(5-2λ,1-λ)
∴XA×XB=(1-2λ)(5-2λ)+(7-λ)(1-λ)
=5-2λ-10λ+4λ^2+7-7λ-λ+λ^2
=5λ^2-20λ+12
对称轴为λ=-(-20)÷(5×2)=2
∴最小值为5×2×2-20×2+12=-8
(ps:λ^2即λ的平方)
等轴双曲线与向量已知等轴双曲线C:x^2-y^2=a^2[a>0]上的一定点P(x0,y0)及曲线C上两动点AB满足(向量OA-向量OP)*(向量OB-向量OP)=0 (其中O为原点)1、求证:(向量OA+向量OP)*(向量OB+向量OP)=0 2、
平面向量数学题已知P点在直线X+Y=-1上,向量OP的模等于1,向量OA点乘向量OP等于1,求向量OA顶点A的轨迹方程(有两解)
已知点O(0,0)、A(1,2),向量OP=向量OA+t*向量AB ,问:四边形ABPO能否为平行四边形
已知向量OA向量ob,为两个不共线向量,且向量ap=t向量ab,其中t是实数求证向量op=(1-t)向量oa+t向量ob
已知向量OP=(2,1)OA=(1,7)OB=(5,1),设X是直线OP上的一点,O为坐标原点,那么向量XA*XB的最小值
已知向量op=(2,1),oA=(1,7),oB=(5,1),设x是直线OP上的一点(0为坐标原点),那么向量XA点乘XB的最小值是多
向量op=(2,1)向量OA=(1,7),向量OB=(5,1)设C施直线向量OP上一点,(其中O为原点),求使向量CA点击向量op=(2,1)向量OA=(1,7),向量OB=(5,1)设C施直线向量OP上一点,(其中O为原点),1)求使向量CA点击向量CB取得最小
1.已知OA、OB不共线,A、B、P共线,证明存在实数t使向量OP=(1-t)向量OA+t向量OB2.已知向量OA、OB不共线,存在实数t使向量OP=(1-t)向量OA+t向量OB,证明A、B、P共线
向量OP=(2,1),向量OA=(1,7),向量OB=(5,1),设X是直线OP上的一点(O为坐标原点),那么向量XA乘向量XB的最小值是
平面向量的计算已知O为坐标原点.向量OP=(x,y),向量OA=(1,1)向量OB=(2,1)若向量OA乘以向量OP小于等于2.x>0,y>0则向量PB的平方的范围是?
已知向量OA、OB是不共线的两个向量,且向量OA=a,向量OB=b,若存在λ∈R,使得向量OP=(1-λ)a+λb,证明向量AP‖AB
数学题;已知向量OP=(2,1),向量OA=(1,7),向量OB=(5,1),设M是直线OP上的一点,O是坐标原点.1)求使向量MA*向量MB取最小值时的向量OM.(2)对(1)中的点M,求角AMB的余弦值.)
在平面直角坐标系xOy内,已知向量OA=(1,5),OB=(7,1),OM=(1,2),P为满足条件向量OP=t向量OM的动点,当向量PA·向量PB取得最小值时.求:(1)向量OP的坐标.(2)cos∠APB的值在线等
已知向量op=(2,1),向量oa=(1,7),向量ob=(5,1),设c是直线op上的一点(o为坐标原点).求使向量ca与向量cb的数量积取到最小值是的向量oc的坐标
已知向量OA和OB是不共线向量,向量AP=t*向量AB(t∈R),试用向量OA和向量OB表示向量OP
已知3向量OA+2向量OB=(13,1),向量OA-向量OB=(1,-3),求向量OA与向量OB已知3向量OA+2向量OB=(13,1),向量OA-向量OB=(1,-3),1、求向量OA与向量OB2、以向量OA与向量OB为邻边作平行四边形OABC,求向量OC
已知向量OP=(2,1),向量OA=(1,7)已知向量OP=(2,1),OA=(1,7),OB=(5,1),设M是直线OP上的一点,O为坐标原点,(1)求使MA*MB取最小值时的向量OM.(2)对(1)中的点M,求∠AMB的余弦值.(说明哦)
在三角形OAB中,已知P为线段AB上的一点,向量OP=x乘向量OA+y乘向量OB 1)若向量BP=向量PA,求x、y的值 2)