方阵A可对角化的充要条件是A的重特征值对应的线性无关的特征向量的个数等于该特征值的重数.是充要条件吗

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 01:34:41

方阵A可对角化的充要条件是A的重特征值对应的线性无关的特征向量的个数等于该特征值的重数.是充要条件吗
方阵A可对角化的充要条件是A的重特征值对应的线性无关的特征向量的个数等于该特征值的重数.是充要条件吗

方阵A可对角化的充要条件是A的重特征值对应的线性无关的特征向量的个数等于该特征值的重数.是充要条件吗
这是充要条件.
对应 A 有n个线性无关的特征向量

方阵A可对角化的充要条件是A的重特征值对应的线性无关的特征向量的个数等于该特征值的重数.是充要条件吗 方阵可相似对角化的问题书上说:方阵A可相似对角化的充分必要条件是A的每个特征值的几何重数等于代数重数.但在例题中却没有讨论:代数重数为1时,几何重数是否也为1只判断重特征值的 关于矩阵相似对角化的概念问题!书上给出了结论:若n阶方阵A的n个特征值互不相等,则A可相似对角化为什么反之:A可相似对角化的话,n阶方阵A的n个特征值不一定全都不相等,可能包含有重根 若A可对角化,则A的秩等于它的非零特征值的个数;那么秩为N的满秩方阵一定有N个非零特征值不就是可对角化 如何理解:方阵A能够相似对角化,其K重特征值有k个线性无关的特征向量?方阵A能够相似对角化,其K重特征值有k个线性无关的特征向量.能够拿一个2阶方阵具体展示一下吗? 线性代数问题(有关特征值、方阵的对角化)设n阶实方阵A满足A^2-2A-3E=0,则下属选择错误的是a.3是A的特征值b.A是可逆矩阵c.A可以相似对角化d.-1不是A的特征值 请问三阶方阵的特征值为0,1,2,求r(A)答案是二且附说:可对角化的矩阵的秩等于其非零特征值的个数.但是题目似乎并没有说明它是可对角化矩阵啊? 线性代数问题 n阶矩阵可对角化的充要条件是不是 矩阵的k重特征值的秩为n-k n介方阵A可以对角化,那么该对角阵一定是由A的特征值构成的吗?如何证明 高等代数 可对角化线性变换的问题A是方阵,证明,若rank(A)+rank(A-E)=n,则A可对角化.A是方阵,证明,若rank(A+E)+rank(A-E)=n,则A可对角化 线性代数相似对角化相关问题,如果一个n阶实数矩阵可对角化,充要条件是必须有n个线性无关的特征向量.情况分两种:如果有n个不同的特征值,那么对应的特征向量a1,a2,a3,.a(n)肯定线性无关; 矩阵AB=BA,A可相似对角化,那么B可以相似对角化吗?A和B的特征值、特征向量相同吗? 矩阵中的最小多项式问题为使矩阵A可对角化,须A的最小多项式没有重根.假设求出了A的特征值是1,-1,-1,那么最小多项式怎么求.最小多项式不会求. 相似对角化与相似正交对角化(其他不变)得到的对角矩阵是否是同一个对角矩阵 (是否只与A本身特征值有关)A可对角化,即A可相似于某个对角矩阵.那么经对角化得到的对角矩阵是否是唯一的. 关于矩阵可对角化的问题n阶方阵A,满足P(A)=0,其中P(x)是x的多项式函数,且P(x)=0无重根,这时能否推出A可对角化? 设A为三阶方阵a1a2a3为三维无关列向量组Aa1=a2+a3,Aa2=a3+a1,Aa3=a1+a2求A的全部特征值?A是否可对角化? 矩阵A的特征值都为正负一,且可相似对角化,证明A^2=E 是不是说每个实n矩阵都可以对角化(注意我说的是实矩阵)n阶矩阵可对角化的充要条件是具有n个线性无关的特征向量 我们已经知道特征值可以是重根 重根对应的基础解系包含的向量个