向量叉乘点乘“·”计算得到的结果是一个标量; A·B=|A||B|cosW(A、B上有向量标,不便打出.W为两向量角度).叉乘“×”得到的结果是一个垂直于原向量构成平面的向量.A×B=|A||B|sinW.为什么是这样
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/02 23:27:28
向量叉乘点乘“·”计算得到的结果是一个标量; A·B=|A||B|cosW(A、B上有向量标,不便打出.W为两向量角度).叉乘“×”得到的结果是一个垂直于原向量构成平面的向量.A×B=|A||B|sinW.为什么是这样
向量叉乘
点乘“·”计算得到的结果是一个标量; A·B=|A||B|cosW(A、B上有向量标,不便打出.W为两向量角度).叉乘“×”得到的结果是一个垂直于原向量构成平面的向量.
A×B=|A||B|sinW.为什么是这样啊?
向量叉乘点乘“·”计算得到的结果是一个标量; A·B=|A||B|cosW(A、B上有向量标,不便打出.W为两向量角度).叉乘“×”得到的结果是一个垂直于原向量构成平面的向量.A×B=|A||B|sinW.为什么是这样
点乘“•”计算得到的结果是一个标量; A•B=|A||B|cosW(A、B上有向量标,不便打出.W为两向量角度). 叉乘“×”得到的结果是一个垂直于原向量构成平面的向量.
A×B=|A||B|sinW.为什么是这样啊?能证明吗?
两空间向量的矢积
向量AB=(x1,y1,z1), 向量CD=(x2,y2,z2)
向量AB×向量CD=(y1z2-z1y2,x2z1-x1z2,x1y2-y1x2)
产生一个新向量,其方向垂直于由向量AB,向量CD确定的平面,其方向由右手定则确定.
两空间向量的矢积的几何意义:
|向量AB×向量CD|=|向量AB|*|向量CD|*sin<向量AB,向量CD>
产生的新向量的模,为以向量AB,向量CD为边的平行四边形的面积
至于证明,由平面几何很容易证明.
应用中,不必证明,直接用这个结论
这个证明当然可以,但是写给你也太麻烦了,如果你自己无法证明,还不如当作知道的定理记住吧,也许不会考到