设ab属于(0,正无穷)求证2ab除于a+b小于等于根号ab

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 21:40:42

设ab属于(0,正无穷)求证2ab除于a+b小于等于根号ab
设ab属于(0,正无穷)求证2ab除于a+b小于等于根号ab

设ab属于(0,正无穷)求证2ab除于a+b小于等于根号ab
可以用反证法.假设2ab除以a+b不小于等于根号ab,则2ab除以a+b大于根号ab.∴2ab/(a+b)>√ab.即2ab>(a+b)√ab.两边平方,(^幂数号)得4a^2b^2>ab(a^2+2ab+b^2),移项,得ab(a^2+b^2-2ab)<0.∵ab>0,(a^2+b^2-2ab)=(a-b)^2>=0,∴假设不成立,∴2ab/(a+b)=<√ab

假设2ab除以a+b不小于等于根号ab,则2ab除以a+b大于根号ab。∴2ab/(a+b)>√ab。即2ab>(a+b)√ab。两边平方,(^幂数号)得4a^2b^2>ab(a^2+2ab+b^2),移项,得ab(a^2+b^2-2ab)<0。∵ab>0,(a^2+b^2-2ab)=(a-b)^2>=0,∴假设不成立,∴2ab/(a+b)=<√ab,就OK了。

最小二项式定理:a+b>=2(ab)^1/2
2ab/(a+b)<=2ab/{2(ab)^1/2}=根号ab
ok 了!

使用均值不等式A+B大于等于根号下AB