高二数学椭圆x²/4+y²/3=1上的点到直线x-y-2根号7=0的距离的最小值为()椭圆x²/4+y²/3=1上的点到直线x-y-2根号7=0的距离的最小值为()
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 16:41:52
高二数学椭圆x²/4+y²/3=1上的点到直线x-y-2根号7=0的距离的最小值为()椭圆x²/4+y²/3=1上的点到直线x-y-2根号7=0的距离的最小值为()
高二数学椭圆x²/4+y²/3=1上的点到直线x-y-2根号7=0的距离的最小值为()
椭圆x²/4+y²/3=1上的点到直线x-y-2根号7=0的距离的最小值为()
高二数学椭圆x²/4+y²/3=1上的点到直线x-y-2根号7=0的距离的最小值为()椭圆x²/4+y²/3=1上的点到直线x-y-2根号7=0的距离的最小值为()
设|F1P|=x,|F2P|=y
由余弦定理得:(1+1)^2=x^2+y^2-2xycos120
即4=x^2+y^2+xy=(x+y)^2-xy
由椭圆定义得x+y=4
得xy=12
由正弦定理得ΔPF1F2的面积=0.5*xy*sin120=3倍根号3
你先设置我最佳答案后,我百度Hii教你.
设|F1P|=x,|F2P|=y
由余弦定理得:(1+1)^2=x^2+y^2-2xycos120
即4=x^2+y^2+xy=(x+y)^2-xy
由椭圆定义得x+y=4
得xy=12
由正弦定理得ΔPF1F2的面积=0.5*xy*sin120=3倍根号3
用sin和cos表示椭圆上的坐标,可以更快的解答。。。
椭圆上点可表示为(2sinA,根号3cosA),代入点到该直线的距离,代数运算,求最小值,很容易求得答案,根号3.。由于不方便,步骤就略了,反正很容易的,相信楼主有这个能力自己解答。。三角函数方法比上面那位仁兄的方法好,而且更不容易出错,也很容易理解掌握。...
全部展开
用sin和cos表示椭圆上的坐标,可以更快的解答。。。
椭圆上点可表示为(2sinA,根号3cosA),代入点到该直线的距离,代数运算,求最小值,很容易求得答案,根号3.。由于不方便,步骤就略了,反正很容易的,相信楼主有这个能力自己解答。。三角函数方法比上面那位仁兄的方法好,而且更不容易出错,也很容易理解掌握。
收起