八(1)班同学上数学活动课,利用角尺平分一个角,设计了如下方案

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 21:41:12

八(1)班同学上数学活动课,利用角尺平分一个角,设计了如下方案
八(1)班同学上数学活动课,利用角尺平分一个角,设计了如下方案

八(1)班同学上数学活动课,利用角尺平分一个角,设计了如下方案
方案(Ⅰ)不可行.缺少证明三角形全等的条件.
方案(Ⅱ)可行.
证明:在△OPM和△OPN中
∴△OPM≌△OPN(SSS)
∴∠AOP=∠BOP(全等三角形对应角相等)
(3)当∠AOB是直角时,此方案可行.
∵四边形内角和为360°,又若PM⊥OA,PN⊥OB,∠OMP=∠ONP=90°,∠MPN=90°,
∴∠AOB=90°
∵若PM⊥OA,PN⊥OB,
且PM=PN
∴OP为∠AOB的平分线.(到角两边距离相等的点在这个角的角平分线上)
当∠AOB不为直角时,此方案不可行.

八(1)班同学上数学活动课,利用角尺平分一个角(如图所示).设计了如下方案:
(Ⅰ)∠AOB是一个任意角,将角尺的直角顶点P介于射线OA、OB之间,移动角尺使角尺两边相同的刻度与M、N重合,即PM=PN,过角尺顶点P的射线OP就是∠AOB的平分线.
(Ⅱ)∠AOB是一个任意角,在边OA、OB上分别取OM=ON,将角尺的直角顶点P介于射线OA、OB之间,移动角尺使角尺两边相同的刻度与...

全部展开

八(1)班同学上数学活动课,利用角尺平分一个角(如图所示).设计了如下方案:
(Ⅰ)∠AOB是一个任意角,将角尺的直角顶点P介于射线OA、OB之间,移动角尺使角尺两边相同的刻度与M、N重合,即PM=PN,过角尺顶点P的射线OP就是∠AOB的平分线.
(Ⅱ)∠AOB是一个任意角,在边OA、OB上分别取OM=ON,将角尺的直角顶点P介于射线OA、OB之间,移动角尺使角尺两边相同的刻度与M、N重合,即PM=PN,过角尺顶点P的射线OP就是∠AOB的平分线.
(1)方案(Ⅰ)、方案(Ⅱ)是否可行?若可行,请证明;若不可行,请说明理由;
(2)在方案(Ⅰ)PM=PN的情况下,继续移动角尺,同时使PM⊥OA,PN⊥OB.此方案是否可行?请说明理由.
分析:(1)方案(Ⅰ)中判定PM=PN并不能判断P就是∠AOB的角平分线,关键是缺少△OPM≌△OPN的条件,只有“边边”的条件;
方案(Ⅱ)中△OPM和△OPN是全等三角形(三边相等),则∠MOP=∠NOP,所以OP为∠AOB的角平分线;
(2)可行.此时△OPM和△OPN都是直角三角形,可以利用HL证明它们全等,然后利用全等三角形的性质即可证明OP为∠AOB的角平分线.
(1)方案(Ⅰ)不可行.缺少证明三角形全等的条件,
∵只有OP=OP,PM=PN不能判断△OPM≌△OPN;
∴就不能判定OP就是∠AOB的平分线;
方案(Ⅱ)可行.
证明:在△OPM和△OPN中
∴△OPM≌△OPN(SSS),
∴∠AOP=∠BOP(全等三角形对应角相等)(5分);
∴OP就是∠AOB的平分线.
(2)当∠AOB是直角时,方案(Ⅰ)可行.
∵四边形内角和为360°,又若PM⊥OA,PN⊥OB,∠OMP=∠ONP=90°,∠MPN=90°,
∴∠AOB=90°,
∵若PM⊥OA,PN⊥OB,
且PM=PN,
∴OP为∠AOB的平分线(到角两边距离相等的点在这个角的角平分线上);
当∠AOB为直角时,此方案可行.

收起

.

题目啊题目
、你这什么东西都没有

http://wenku.baidu.com/view/c8740d1755270722192ef777.html 第十页第26题答案 很详细

分析:(1)方案(Ⅰ)中判定PM=PN并不能判断P就是∠AOB的角平分线,关键是缺少△OPM≌△OPN的条件,只有“边边”的条件;
方案(Ⅱ)中△OPM和△OPN是全等三角形(三边相等),则∠MOP=∠NOP,所以OP为∠AOB的角平分线;
(2)可行.此时△OPM和△OPN都是直角三角形,可以利用HL证明它们全等,然后利用全等三角形的性质即可证明OP为∠AOB的角平分线.(1)方...

全部展开

分析:(1)方案(Ⅰ)中判定PM=PN并不能判断P就是∠AOB的角平分线,关键是缺少△OPM≌△OPN的条件,只有“边边”的条件;
方案(Ⅱ)中△OPM和△OPN是全等三角形(三边相等),则∠MOP=∠NOP,所以OP为∠AOB的角平分线;
(2)可行.此时△OPM和△OPN都是直角三角形,可以利用HL证明它们全等,然后利用全等三角形的性质即可证明OP为∠AOB的角平分线.(1)方案(Ⅰ)不可行.缺少证明三角形全等的条件,
∵只有OP=OP,PM=PN不能判断△OPM≌△OPN;
∴就不能判定OP就是∠AOB的平分线;
方案(Ⅱ)可行.
证明:在△OPM和△OPN中
OM=ON PM=PN OP=OP
∴△OPM≌△OPN(SSS),
∴∠AOP=∠BOP(全等三角形对应角相等)(5分);
∴OP就是∠AOB的平分线.
(2)当∠AOB是直角时,方案(Ⅰ)可行.
∵四边形内角和为360°,又若PM⊥OA,PN⊥OB,∠OMP=∠ONP=90°,∠MPN=90°,
∴∠AOB=90°,
∵若PM⊥OA,PN⊥OB,
且PM=PN,
∴OP为∠AOB的平分线(到角两边距离相等的点在这个角的角平分线上);
当∠AOB不为直角时,此方案不可行.

收起

八(1)班同学上数学活动课,利用角尺平分一个角 八(1)班同学上数学活动课,利用角尺平分一个角,设计了如下方案 八(1)班同学上数学活动课,李勇角尺平分一个角 八(1)班同学上数学活动课,利用角尺平分一个角设计了如下方案:(Ⅰ)∠AOB是一个任意角,将角尺的直角顶点P介于射线OA、OB之间,移动角尺使角尺两边相同的刻度与M、N重合,即PM=PN,过角尺 八(1)班同学上数学活动课,利用角尺平分一个角设计了如下方案:30 依恋娇娇 | 2011-07八(1)班同学上数学活动课,利用角尺平分一个角设计了如下方案:30依恋娇娇 | 2011-07-10 | 分享(Ⅰ) 八(1)班同学上数学活动课,利用角尺平分一个角(如图).设计了如下方案:(Ⅰ)∠AOB是一个任意角,将角尺的直角顶点P介于射线OA、OB之间,移动角尺使角尺两边相同的刻度与M、N重合,即PM= 某同学上数学活动课,利用角尺平分一个角.设计了如下方案(1)角aob是一个任意角,将角尺的 某班同学上数学活动课,利用角尺平分一个角.设计了如下方案(1)角AOB是一个任意角,将角尺的直角顶点P介OA、OB之间,移动角尺使角尺两边相同的刻度与M、N重合,即PM=PN,过角尺顶点P的射线OP就 七年级1班同学上数学课活动课,利用角尺平分一个角,设计了如下方案: 某校八年级一班同学上数学活动课利用角尺平分一个角设计了如下方案 工人师傅常利用角尺平分一个任意角工人师傅常用角尺平分一个任意角.如图,∠AOB是一个任意角,在边OA、OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M、N重合.这时过角尺顶点C的射 利用角尺平分一个角.设计了如下方案 工人师傅经常利用角尺平分一个任意角,如图,∠AOB是一个任意角,在边OA、OB上分别取OD=OE,移动角尺,使角尺两边相同的刻度分别与点D,E重合,这时过角尺顶点P的射线PO就是∠AOB的平分线,你能说 八上数学书122的活动1,2 如图,点M (2,2)将一个90度的角尺的直角顶点放在M处角尺的两边分别交X轴Y轴下半轴数学新观察八年级上如图,点M (2,2)将一个90度的角尺的直角顶点放在M处角尺的两边分别交X轴Y轴正半 一节数学实践活动课上,六(4)班的四名同学在测量一块鹅卵石的体积,他们合作进行如下的操作和测量:1、一节数学实践活动课上,六(4)班的四名同学在测量一块鹅卵石的体积,他们合作进 一节数学实践活动课上,六(4)班的四名同学在测量一块鹅卵石的体积.一节数学实践活动课上,六(4)班的四名同学在测量一块鹅卵石的体积,他们合作进行如下的操作和测量:1、李华准备了 (南京2012中考一模数学第28题)在图形的全等变换中,有旋转变换,翻折(轴对称)变换和平移变换,一次数学活动课上,老师组织大家利用矩形进行图形变换的探究活动.(2)第二小组同学将矩