定积分(0到π(pai))(x*sinx)/(1+(cosx)^4)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 01:48:32

定积分(0到π(pai))(x*sinx)/(1+(cosx)^4)
定积分(0到π(pai))(x*sinx)/(1+(cosx)^4)

定积分(0到π(pai))(x*sinx)/(1+(cosx)^4)
做变量替换x=pi-t,t从pi到0,原积分化为从0到pi((pi-t)sint/(1+cos^4t)dt)=从0到pi((pi-x)sinx/(1+cos^4x)dx),因此合并一下有原积分=pi/2积分号从0到pi(sinx/(1+cos^4x)dx),后者利用代换cosx=y可以积出

参考同济高数6版248页(5版245页)的例6:(0到π(pai))(x*sinx)/(1+(cosx)^2)