高等代数的一道题目,涉及多项式互素和矩阵运算,矩阵的秩.设数域F上的多项式h(x)和g(x)互素,即(h(x),g(x))=1,又f(x)=h(x)g(x),若存在n阶实矩阵A使得f(A)=0,证明:r (g(A)) + r (h(A)) = n.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 21:44:25
高等代数的一道题目,涉及多项式互素和矩阵运算,矩阵的秩.设数域F上的多项式h(x)和g(x)互素,即(h(x),g(x))=1,又f(x)=h(x)g(x),若存在n阶实矩阵A使得f(A)=0,证明:r (g(A)) + r (h(A)) = n.
高等代数的一道题目,涉及多项式互素和矩阵运算,矩阵的秩.
设数域F上的多项式h(x)和g(x)互素,即(h(x),g(x))=1,又f(x)=h(x)g(x),若存在n阶实矩阵A使得f(A)=0,证明:r (g(A)) + r (h(A)) = n.
高等代数的一道题目,涉及多项式互素和矩阵运算,矩阵的秩.设数域F上的多项式h(x)和g(x)互素,即(h(x),g(x))=1,又f(x)=h(x)g(x),若存在n阶实矩阵A使得f(A)=0,证明:r (g(A)) + r (h(A)) = n.
由于秩不依赖于域的选取, 可以在复数域上处理.
先把A化到Jordan标准型, 然后对于每个Jordan块J_i而言g(J_i)和h(J_i)至少有一个非奇异(因为g和h没有重根), 而g(J_i)h(J_i)=0, 所以这两个因子恰有一个为零, 另一个满秩. 把所有Jordan块对应的秩加一下就是结论.
高等代数的一道题目,涉及多项式互素和矩阵运算,矩阵的秩.设数域F上的多项式h(x)和g(x)互素,即(h(x),g(x))=1,又f(x)=h(x)g(x),若存在n阶实矩阵A使得f(A)=0,证明:r (g(A)) + r (h(A)) = n.
高等代数题目,多项式.
求助,高等代数题目,多项式.
高等代数,都是矩阵的题,有一道关于矩阵的秩,
高等代数,多项式
高等代数多项式
高等代数多项式?
高等代数矩阵的对角化习题
高等代数,线性代数,求矩阵的行列式
高等代数简单的矩阵求解
高等代数 矩阵运算
一道高等代数方阵行列式的题如题从矩阵行列式到后面1+什么的 看不懂,
线性代数 高等代数 多项式矩阵的初等因子、行列式因子、不变因子的含义、找法、联系是什么? 「最好线性代数 高等代数 多项式矩阵的初等因子、行列式因子、不变因子的含义、找法、联
高等代数的一道课后习题证明任意一个复矩阵都可以表示成两个对称矩阵的乘积
高等代数题目,行列式的初步应用
高等代数关于线性空间的题目
高等代数一道题
一道高等代数题