已知A、B两点分别是x轴上位于原点左、右两侧的点,点P(2,m)在第一象限内,直线PA交y轴于点C(0,2),直线PB交y轴于点D,S△AOP=6.(1)求点A的坐标和M的值;(2)若S△BOM=S△DOM,求BD的解析式

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 14:59:22

已知A、B两点分别是x轴上位于原点左、右两侧的点,点P(2,m)在第一象限内,直线PA交y轴于点C(0,2),直线PB交y轴于点D,S△AOP=6.(1)求点A的坐标和M的值;(2)若S△BOM=S△DOM,求BD的解析式
已知A、B两点分别是x轴上位于原点左、右两侧的点,点P(2,m)在第一象限内,直线PA交y轴于点C(0,2),
直线PB交y轴于点D,S△AOP=6.(1)求点A的坐标和M的值;(2)若S△BOM=S△DOM,求BD的解析式

已知A、B两点分别是x轴上位于原点左、右两侧的点,点P(2,m)在第一象限内,直线PA交y轴于点C(0,2),直线PB交y轴于点D,S△AOP=6.(1)求点A的坐标和M的值;(2)若S△BOM=S△DOM,求BD的解析式
(1)∵S△AOP = S△COP+ S△AOC=OC*2 /2+OC*lAOl/2=2+ lAOl=6∴lAOl=4∴点A的坐标(-4,0) ∵ S△AOP = lAOl *m/2=6
∴m=3
(2)设BD的解析式 y=k*x+b
那么 B(-b/k,0) D(0,b)
∵ S△BOP=S△DOP
∴S△BOP+S△DOP=2*S△BOP=2*S△DOP
S△BOP+S△DOP = lOB*ODl/2;
S△BOP =lOBl*3/2=l-b/kl*3/2
S△DOP = lODl*2/2=lbl∴ k=-3/2 b=6∴BD的解析式:y= -3/2x+6
∑小学生数学团▲帮你建模,同你进步;若不明白,

已知A、B两点分别是x轴上位于原点左、右两侧的点,点P(2,m)在第一象限内,直线PA交y轴于点C(0,2),直线PB交y轴于点D,S△AOP=6.(1)求点A的坐标和M的值;(2)若S△BOM=S△DOM,求BD的解析式 已知椭圆C的中心在原点,焦点在x轴上,离心率为2/3,且过点(3倍根号3,根号5),点A,B分别是椭圆长轴的左、右端点,点F是椭圆的右焦点,点P在椭圆上,且位于x轴上方,PA垂直于PF.求:(1)椭圆C的方程 P是椭圆x^2/a^2+y^2/b^2=1(a>b>0)上位于第二象限的一点,F1是椭圆的左焦点,且PF1垂直于x轴,A,B分别是椭圆的右顶点和上顶点.若AB平行于OP(O为坐标原点),求椭圆的离心率e. 点A、B分别是椭圆x^2/36+y^2/20=1长轴的左、右端点,点F是椭圆的右焦点.点P在椭圆上,且位于x轴的上方...点A、B分别是椭圆x^2/36+y^2/20=1长轴的左、右端点,点F是椭圆的右焦点.点P在椭圆上,且位于x轴 一道数学题(初一一次函数)已知,A.B分别是X轴上位于原点左.右两侧的点,点P(2,m)在第一象限,直线PA交y轴于点C(0,2),直线PB交y轴于点D,S三角形AOP=6.(1)求三角形COP的面积(这我会,直接答2. 点A,B分别是椭圆x^2/36+y^2/20=1长轴的左,右端点,点F是椭圆的右焦点,点P在椭圆上,且位于x轴上方,PA垂直PF.1.求点P的坐标2.设M是长轴上的AB两点,M到直线AP的距离等于|MB|,求点M的坐标 如图,A,B分别是x轴上位于原点左,右两侧的点,点M(2,p)在第一象限,直线MA交y轴于A(-4,0),直线MB交y轴于点D,S△AOM=6,(1)求直线AC的解析式,(2)若S△BOM=S△DOM,求直线BD的解析式 (3)在直线AC上 已知椭圆x^2/a^2+y^2/b^2,F1F2分别是它的左,右焦点,如果在椭圆上存在一点M(x0,y0),使得 如图所示,A、B分别是X轴上位于原点两侧的两点,点(2,P)在第一象限.直线中A交Y轴于点C(0,2).直线PB交Y如图所示,A、B分别是X轴上位于原点两侧的两点,点(2,P)在第一象限.直线PA交Y轴于点C(0,2).直 难死了!A,B分别是x轴上位于原点左,右两侧的点,点M(2,P)在第一象限,直线MA交y轴与点C(0,2),直线BM交y轴于点D.S△AOM=6.1.求点A的坐标及p的值2.若S△BOM=S△DOM,求直线BD的解析式 如图所示,A,B分别是x轴上位于原点左、右两侧的点,点P(2,p)在第一象限,直线PA交y轴于点C(0,2),直线PB交y轴于点D,S△AOP=6.1、求S△BOP的面积2、求点A的坐标及P的值3、若S△BOP=S△DOP,求直线BD的 已知F1、F2分别是椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的左、右两个焦点,右焦点F2(c,0)到上顶点的距离为2,a^2 椭圆离心率已知椭圆x^2/a^2+y^2/b^2=1(a>b>0)的左、右顶点分别是A、B,右焦点是F,过F点作直线与长轴垂直,与椭圆交于P,Q两点.(1)若∠PBF=60°,求椭圆的离心率 点A,B分别是椭圆x^2/36+y^2/20=1长轴的左,右端点,点F是椭圆的右焦点,点P在椭圆上,且位于x轴上方,PA垂直PF,求点P坐标 已知点P(-1,2分之3)是椭圆C:x²/a²+y²/b²=1(a>b>0)上一点F1,F2,分别是圆C的左、右焦点,O是坐标原点.PF1⊥x轴.①求椭圆c的方程.②:设A、B是椭圆C上两个动点,满足:向量PA+向量PB=拉 如图,椭圆C的中心在原点,焦点在x轴上,F1,F2分别是椭圆C的左、右焦点,M是椭圆短轴的一个端点,过F1的直线l与椭圆交于A,B两点,△MF1F2的面积为4,△ABF2的周长为 8√2(Ⅰ)求椭圆C的方程;(Ⅱ) 如图,F为双曲线C:x²/a²-y²/b²=1(a>0,b>0)的右焦点.P为双曲线C右支上一点,且位于x轴上方.M为左准线上一点.O为坐标原点.已知四边形OFPM为平行四边形,|PF|=|OF|(1)求双曲线C的离心率e( 双曲线 F为双曲线C:x^2/a^2+y^2/b^2=1(a>0,b>0)的右焦点F为双曲线C:x^2/a^2+y^2/b^2=1(a>0,b>0)的右焦点.P为双曲线C右支上一点,且位于x轴上方,M为左准线上一点,O为坐标原点.已知四边形OFPM为平行四边