如图,A,B分别是x轴上位于原点左,右两侧的点,点M(2,p)在第一象限,直线MA交y轴于A(-4,0),直线MB交y轴于点D,S△AOM=6,(1)求直线AC的解析式,(2)若S△BOM=S△DOM,求直线BD的解析式 (3)在直线AC上

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 17:40:00

如图,A,B分别是x轴上位于原点左,右两侧的点,点M(2,p)在第一象限,直线MA交y轴于A(-4,0),直线MB交y轴于点D,S△AOM=6,(1)求直线AC的解析式,(2)若S△BOM=S△DOM,求直线BD的解析式 (3)在直线AC上
如图,A,B分别是x轴上位于原点左,右两侧的点,点M(2,p)在第一象限,直线MA交y轴于A(-4,0),
直线MB交y轴于点D,S△AOM=6,(1)求直线AC的解析式,(2)若S△BOM=S△DOM,求直线BD的解析式 (3)在直线AC上找一点P,使得S△BMP=S△MOB,求点P的坐标

如图,A,B分别是x轴上位于原点左,右两侧的点,点M(2,p)在第一象限,直线MA交y轴于A(-4,0),直线MB交y轴于点D,S△AOM=6,(1)求直线AC的解析式,(2)若S△BOM=S△DOM,求直线BD的解析式 (3)在直线AC上
直线MA交y轴于点C! 点A的坐标为:(-4,0). 1) AC = 丨-1丨 = 1 S△AOM=AO*p/2 = 6, p = 12 所以,点M(2,12) 设直线AC的解析式为:y = kx + b -4k + b = 0 2k + b = 12 k =2, b = 8 直线AC的解析式为:y =2x + 8

如图,A,B分别是x轴上位于原点左,右两侧的点,点M(2,p)在第一象限,直线MA交y轴于A(-4,0),直线MB交y轴于点D,S△AOM=6,(1)求直线AC的解析式,(2)若S△BOM=S△DOM,求直线BD的解析式 (3)在直线AC上 P是椭圆x^2/a^2+y^2/b^2=1(a>b>0)上位于第二象限的一点,F1是椭圆的左焦点,且PF1垂直于x轴,A,B分别是椭圆的右顶点和上顶点.若AB平行于OP(O为坐标原点),求椭圆的离心率e. 点A、B分别是椭圆x^2/36+y^2/20=1长轴的左、右端点,点F是椭圆的右焦点.点P在椭圆上,且位于x轴的上方...点A、B分别是椭圆x^2/36+y^2/20=1长轴的左、右端点,点F是椭圆的右焦点.点P在椭圆上,且位于x轴 如图,F为双曲线C:x/a-y/b=1(a>0,b>0)的右焦点.P为双曲线C右支上一点,且位于如图,F为双曲线C:x/a-y/b=1(a>0,b>0)的右焦点.P为双曲线C右支上一点,且位于x轴上方.M为左准线上一点.O为坐标原点. 如图a,b,分别是x轴位于原点左,右两侧的点,点m(p,3)在第一象限直线ma交y于点c(0.2)直线bm交y轴于点d,S三角形aom(1)求点a的坐标及p的值(2)若s△dom,求bd的解析式 已知椭圆C的中心在原点,焦点在x轴上,离心率为2/3,且过点(3倍根号3,根号5),点A,B分别是椭圆长轴的左、右端点,点F是椭圆的右焦点,点P在椭圆上,且位于x轴上方,PA垂直于PF.求:(1)椭圆C的方程 如图,F为双曲线C:x²/a²-y²/b²=1(a>0,b>0)的右焦点.P为双曲线C右支上一点,且位于x轴上方.M为左准线上一点.O为坐标原点.已知四边形OFPM为平行四边形,|PF|=|OF|(1)求双曲线C的离心率e( 一道数学题 高二的如图,F1,F2是椭圆C:x^2/a^2 + y^2/b^2 =1 (a>b>0)的左 右焦点,A,B分别是椭圆C的右顶点和上顶点,P是椭圆C上第一象限的一点,O为坐标原点,PF1垂直PF2.1.设椭圆C的离心率为e,证明:根号2/2 难死了!A,B分别是x轴上位于原点左,右两侧的点,点M(2,P)在第一象限,直线MA交y轴与点C(0,2),直线BM交y轴于点D.S△AOM=6.1.求点A的坐标及p的值2.若S△BOM=S△DOM,求直线BD的解析式 如图所示,A,B分别是x轴上位于原点左、右两侧的点,点P(2,p)在第一象限,直线PA交y轴于点C(0,2),直线PB交y轴于点D,S△AOP=6.1、求S△BOP的面积2、求点A的坐标及P的值3、若S△BOP=S△DOP,求直线BD的 已知A、B两点分别是x轴上位于原点左、右两侧的点,点P(2,m)在第一象限内,直线PA交y轴于点C(0,2),直线PB交y轴于点D,S△AOP=6.(1)求点A的坐标和M的值;(2)若S△BOM=S△DOM,求BD的解析式 一道数学题(初一一次函数)已知,A.B分别是X轴上位于原点左.右两侧的点,点P(2,m)在第一象限,直线PA交y轴于点C(0,2),直线PB交y轴于点D,S三角形AOP=6.(1)求三角形COP的面积(这我会,直接答2. 如图,椭圆C的中心在原点,焦点在x轴上,F1,F2分别是椭圆C的左、右焦点,M是椭圆短轴的一个端点,过F1的直线l与椭圆交于A,B两点,△MF1F2的面积为4,△ABF2的周长为 8√2(Ⅰ)求椭圆C的方程;(Ⅱ) 点A,B分别是椭圆x^2/36+y^2/20=1长轴的左,右端点,点F是椭圆的右焦点,点P在椭圆上,且位于x轴上方,PA垂直PF,求点P坐标 点A,B分别是椭圆X^2/36+Y^2/20=1长轴的左,右端点 ,点F是椭圆的右焦点,点P在椭圆上,且位于x轴上方,PA⊥PF设M是椭圆长轴AB上的一点,M到直线AP的距离等于|MB|,求椭圆上的点到点M的距离d的最小值.(图 点A、B分别是椭圆 长轴的左、右端点,点F是椭圆的右焦点.点P在椭圆上,且位于x轴的上方,PA⊥PF.(1)求点P的坐标.(2)设M为椭圆长轴AB上的一点,M到直线AP的距离等于 ,求椭圆上的点到点M的距 点A,B分别是椭圆x^2/36+y^2/20=1长轴的左,右端点,点F是椭圆的右焦点,点P在椭圆上,且位于x轴上方,PA垂直PF.1.求点P的坐标2.设M是长轴上的AB两点,M到直线AP的距离等于|MB|,求点M的坐标 已知椭圆x^2/a^2+y^2/b^2,F1F2分别是它的左,右焦点,如果在椭圆上存在一点M(x0,y0),使得