韦达定理 (4 16:39:48)什么是韦达定理
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/03 01:28:05
韦达定理 (4 16:39:48)什么是韦达定理
韦达定理 (4 16:39:48)
什么是韦达定理
韦达定理 (4 16:39:48)什么是韦达定理
一元二次方程ax^2+bx+c=0的两个根是x1和x2
则x1+x2=-b/a,x1x2=c/a
者可以由求根公式得到
x1=[-b+√(b^2-4ac)]/2a,x2=[-b-√(b^2-4ac)]/2a
所以x1+x2=-2b/2a=-b/a
x1x2={(-b)^2-[√(b^2-4ac)]^2]/4a^2=(b^2-b^2-4ac)/4a^2=c/a
方程ax^2+bx+c=0的两个解为x1,x2
x1+x2=-b/a
x1乘以x2=c/a
西西
在初中阶段,韦达定理就是对于一元二次方程ax^2+bx+c=0,若存在两个实数根,则两根之和等于-b/a,两根之积等于c/a,注意使用此定理解题时要验证判别式不小于0.
韦达定理
如果一元二次方程
在复数集中的根是,那么
法国数学家韦达最早发现代数方程的根与系数之间有这种关系,因此,人们把这个关系称为韦达定理。历史是有趣的,韦达的16世纪就得出这个定理,证明这个定理要依靠代数基本定理,而代数基本定理却是在1799年才由高斯作出第一个实质性的论性。
由代数基本定理可推得:任何一元 n 次方程
在复数集中必有根。因此,...
全部展开
韦达定理
如果一元二次方程
在复数集中的根是,那么
法国数学家韦达最早发现代数方程的根与系数之间有这种关系,因此,人们把这个关系称为韦达定理。历史是有趣的,韦达的16世纪就得出这个定理,证明这个定理要依靠代数基本定理,而代数基本定理却是在1799年才由高斯作出第一个实质性的论性。
由代数基本定理可推得:任何一元 n 次方程
在复数集中必有根。因此,该方程的左端可以在复数范围内分解成一次因式的乘积:
其中是该方程的个根。两端比较系数即得韦达定理。
韦达定理在方程论中有着广泛的应用。
简单的说就是x+y=-b/a xy=c/a
一元二次方程ax^2+bx+c (a不为0)中 b^2-4ac≥0时 x1+x2=-b/a x1*x2=c/a
一元二次方程ax^2+bx+c (a不为0)中
设两个根为x和y
则x+y=-b/a
xy=c/a
韦达定理在更高次方程中也是可以使用的。一般的,对一个n次方程∑AiX^i=0
它的根记作X1,X2…,Xn
我们有
∑Xi=(-1)^1*A(n-1)/A(n)
∑XiXj=(-1)^2*A(n-2)/A(n)
…
∏Xi=(-1)^n*A(0)/A(n)
其中∑是求和,∏是求积。
韦达定理即根与系数的关系。
对于一元二次方程ax^2+bx+c=0来说,若它的两个根为x1、x2,则
x1+x2=-b/a
x1*x2=c/a
对于一元三次方程ax^3+bx^2+cx+d=0来说,若它的三个根为x1、x2、x3,则
x1+x2+x3=-b/a
1/x1+1/x2+1/x3=-c/d
x1*x2*x3=-d/a
对于一元n次方程x^n+a1*x^(n-1)+……+an-1*x+an=0来说(式中a1、an-1、an的1、n-1、n为a的下标),若它的n个根为x1、x2、……、xn。则
x1+x2+……+xn=-a1
x1*x2+x1*x3+……+xn-1*xn=a2
x1*x2*x3+x1*x2*x4+……+xn-2*xn-1*xn=-a3
……
x1*x2*……*xn=(-1)^n*an
以上就是根与系数的关系。
收起
一元二次方程ax^2+bx+c=0 (a≠0 且△=b^2-4ac≥0)中
设两个根为X1和X2
则X1+X2= -b/a
X1*X2=c/a
不能用于线段
用韦达定理判断方程的根
若b^2-4ac>0 则方程有两个不相等的实数根
若b^2-4ac=0 则方程有两个相等的实数根
若b^2-4ac<0...
全部展开
一元二次方程ax^2+bx+c=0 (a≠0 且△=b^2-4ac≥0)中
设两个根为X1和X2
则X1+X2= -b/a
X1*X2=c/a
不能用于线段
用韦达定理判断方程的根
若b^2-4ac>0 则方程有两个不相等的实数根
若b^2-4ac=0 则方程有两个相等的实数根
若b^2-4ac<0 则方程没有实数解
收起
二次函数ax方+bx+c=0 两根和=-a/b 两根积=c/a
当然要检查下方程是不是有两根~
对于一个一元二次方程ax²+bx+c=0
它的两个实数根X1.X2
韦达定理就是
X1+X2=负a分之c
X1*X2=a分之b
PS:*代表乘
韦达定理:
一元二次方程ax^2+bx+c=0 (a≠0 且△=b^2-4ac≥0)中
设两个根为X1和X2
则X1+X2= -b/a
X1*X2=c/a
作用如下:
1.一元二次方程的根的判别式
一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac
当△>0时,方程有两个不...
全部展开
韦达定理:
一元二次方程ax^2+bx+c=0 (a≠0 且△=b^2-4ac≥0)中
设两个根为X1和X2
则X1+X2= -b/a
X1*X2=c/a
作用如下:
1.一元二次方程的根的判别式
一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac
当△>0时,方程有两个不相等的实数根;
当△=0时,方程有两个相等的实数根,
当△<0时,方程没有实数根.
2.一元二次方程的根与系数的关系
(1)如果一元二次方程ax2+bx+c=0(a≠0)的两个根是x1,x2,那么 ,
(2)如果方程x2+px+q=0的两个根是x1,x2,那么x1+x2=-P,
x1x2=q
(3)以x1,x2为根的一元二次方程(二次项系数为1)是
x2-(x1+x2)x+x1x2=0.
3.二次三项式的因式分解(公式法)
在分解二次三项式ax2+bx+c的因式时,如果可用公式求出方程ax2+bx+c=0的两个根是1,x2,那么ax2+bx+c=a(x-x1)(x-x2).
举一个例子吧:
3x^2+8x+4=0
X1+X2=-8/3
X1×X2=4/3 很容易得出两个根:
X1=-2 X2=-2/3
知道了两个根,再来做这个因式分解吧
3x^2+8x+4
=a(x-x1)(x-x2)
=3(x+2)(x+2/3)
收起
一元二次方程ax^2+bx+c=0 (a≠0 且△=b^2-4ac≥0)中
设两个根为X1和X2
则x1+x2= -b/a
x1*x2=c/a
如果你是初中生,了解一下就行了,中考中不可以应用的,现在的教材中已经删掉了这部分内容,直接应用,必然扣分,记住哦
一元二次方程ax^2+bx+c (a不为0)中
设两个根为x和y
则x+y=-b/a
xy=c/a
韦达定理(又叫一元二次方程的根与系数的关系,简称根系关系。)指出,一元二次方程的两根的和等于它的一次项系数除以二次项系数所得的商的相反数;两根的积等于它的常数项除以二次项系数所得的商。...
全部展开
一元二次方程ax^2+bx+c (a不为0)中
设两个根为x和y
则x+y=-b/a
xy=c/a
韦达定理(又叫一元二次方程的根与系数的关系,简称根系关系。)指出,一元二次方程的两根的和等于它的一次项系数除以二次项系数所得的商的相反数;两根的积等于它的常数项除以二次项系数所得的商。
收起