设是一个具有消去律的有限独异点,证明是一个群.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 21:29:00

设是一个具有消去律的有限独异点,证明是一个群.
设是一个具有消去律的有限独异点,证明是一个群.

设是一个具有消去律的有限独异点,证明是一个群.
只需证G中每个元都有逆元.
先证a*x=b必有
 ·由于G是有限的,故设其有n个元素a_1,a_2,...,a_n
 ·用a左乘之,得a*G:={a*a_1,a*a_2,...,a*a_n}
 ·由于乘法具有封闭性,得a*G⊆G
 ·又由于消去律,∀i∀j(a*a_i = a*a_j ⇒ a_i = a_j),于是a*G中元素两两不同,即a*G与G等势.但G是有限集,不能与其真子集具有相同的基数,因此a*G⫋G不成立(“⫋”为真子集记号),即只能是a*G=G
 ·于是b∈a*G,即∃i(b = a*a_i),也即∃x(b = a*x)
再证G中每个元都有逆元:
 ·任取G中一元a,则a*x=e(e是单位元)有解.这样,x就是a的逆元.

设是一个具有消去律的有限独异点,证明是一个群. 一道近世代数题目设G是一个具有乘法运算的非空有限集合,证明:如果G满足结合律,有左单位元,且右消去律成立,则G是一个群 证明:有么元且满足消去定律的有限半群一定是群 数学分析(1)有限覆盖定理证明题设f(x)是区间I(不一定是有限闭区间)上的连续函数,用有限覆盖定理证明f(I)也是一个区间 设有限群G恰好具有两个n阶子群H,K,并且G由H,K生成,证明H,K是G的正规子群 设A,B是有限集合,且|A|=|B|,又f:A->B是一个映射,证明:f是单射f是满射.>>求详细的证明嗯嗯 抽象代数证明题:设H是群G的一个非空子集,且H中每个元素的阶都有限.证明:H 证明:设G是有限群,n整除|G|,且G中仅有一个n阶子群H,则H是G 的正规子群. 近世代数证明题:满足左、右消去律的有限半群必是群,我正好在写这个作业题. 送分 证明有限生成群的指数有限子群是有限生成群 群和子群有这个一个题,实在不懂,有哪位大虾帮帮忙证明,设G是交换群,证明G中一切有限阶元素所成集合H是G的一个子群 设an是一个各项均大于0的数列,其极限为一个非零有限数a,求证(an)^(1/n)=1不好意思,是证明这个新数列的极限等于1 质数的个数是有限的吗?如何证明? 全部题目是 设函数f在[0,+∞]上具有连续的导函数,且lim(x→+∞)f'(x)存在有限,0 如何用傅里叶变换证明,一个信号既不可能是时间有限信号又是频率有限信号? 证明或反驳:设M是一个有限群,|M|=n,则n次对称群包含于AutM(自同构群). 试证明在一个有限群里,周期大于2的元素的个数一定是偶数. 抽象代数证明:一个有限非交换群所包含的元素个数至少是6个