线性代数 矩阵的秩 求大师解

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 23:33:17

线性代数 矩阵的秩 求大师解
线性代数 矩阵的秩 求大师解

线性代数 矩阵的秩 求大师解
原式等价于
1 3 -9 3
0 1 -3 4
0 3 -9 12
等价于
1 3 -9 3
0 1 -3 4
0 0 0 0
所以
秩=2
最高阶非零子式
=| 1 3
0 1|=1

A =
[1 3 -9 3]
[0 1 -3 4]
[-2 -3 9 6]
行初等变换为
[1 3 -9 3]
[0 1 -3 4]
[0 3 -9 ...

全部展开

A =
[1 3 -9 3]
[0 1 -3 4]
[-2 -3 9 6]
行初等变换为
[1 3 -9 3]
[0 1 -3 4]
[0 3 -9 12]
行初等变换为
[1 3 -9 3]
[0 1 -3 4]
[0 0 0 0]
r(A)=2, 其中一个最高阶子式是
|1 3|
|0 1|
= 1

收起