数学几何填空 如图,在△ABC中,已知∠BAC=90°,AD⊥BC,垂足为点D,BF平分∠ABC,且交AD与点E,交AC于点F,请说明∠BED与∠AFB相等的理由 因为BF平分∠ABC (已知)所以∠ABF=_____( )在△ABF中,∠AFB+∠ABF+∠B
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 02:51:08
数学几何填空 如图,在△ABC中,已知∠BAC=90°,AD⊥BC,垂足为点D,BF平分∠ABC,且交AD与点E,交AC于点F,请说明∠BED与∠AFB相等的理由 因为BF平分∠ABC (已知)所以∠ABF=_____( )在△ABF中,∠AFB+∠ABF+∠B
数学几何填空
如图,在△ABC中,已知∠BAC=90°,AD⊥BC,垂足为点D,BF平分∠ABC,且交AD与点E,交AC于点F,请说明∠BED与∠AFB相等的理由
因为BF平分∠ABC (已知)
所以∠ABF=_____( )
在△ABF中,
∠AFB+∠ABF+∠BAF=180°( )
在△BDE中,
∠BED+∠EBD+∠BDE=180°( )
由AD⊥BC ( )
得∠BDE=90°(垂直的意义)
又∠BAC=90° ( )
所以∠BED=∠AFB( )
数学几何填空 如图,在△ABC中,已知∠BAC=90°,AD⊥BC,垂足为点D,BF平分∠ABC,且交AD与点E,交AC于点F,请说明∠BED与∠AFB相等的理由 因为BF平分∠ABC (已知)所以∠ABF=_____( )在△ABF中,∠AFB+∠ABF+∠B
【参考答案】
因为BF平分∠ABC (已知)
所以∠ABF=【∠CBF】( 角平分线性质 )
在△ABF中,
∠AFB+∠ABF+∠BAF=180°(三角形内角和为180°)
在△BDE中,
∠BED+∠EBD+∠BDE=180°(三角形内角和为180°)
由AD⊥BC (已知)
得∠BDE=90°(垂直的意义)
又∠BAC=90° (已知)
所以∠BED=∠AFB(等量减等量差相等)
角FBD(角平分线)
三角形内角和180度
三角形内角和180度
已知
已知
等量代换
角FBD(角平分线)三角形内角和180度三角形内角和180度已知已知等量代换