正方形判定和性质在正方形ABCD中,P是CD上一点,BE⊥AP于E,DF⊥AP于F,求证:AE=DF.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 05:07:06
正方形判定和性质在正方形ABCD中,P是CD上一点,BE⊥AP于E,DF⊥AP于F,求证:AE=DF.
正方形判定和性质
在正方形ABCD中,P是CD上一点,BE⊥AP于E,DF⊥AP于F,求证:AE=DF.
正方形判定和性质在正方形ABCD中,P是CD上一点,BE⊥AP于E,DF⊥AP于F,求证:AE=DF.
证明:∵四边形ABCD是正方形
∴AB=AD,∠BAD=∠CDA=90°
∵BE⊥AP
∴∠EAB+∠EBA=90°(直角三角形两锐角互余)
同理:∠DAF+∠ADF=90°
又∵∠EAB+∠DAF=∠BAD=90°
∴∠ABE=DAF(等式的性质)
在△ABE和△DAF中
∵∠AEB=∠DFA,∠ABE=DAF,AB=DA
∴△ABE≌△DAF(A.A.S.)
∴AE=DF(全等三角形对应边相等)
延长BE交AD于点O
在正方形ABCD中,AB=AD
∵在直角△ABO和直角△DAP中
∠ABO=∠DAP
AB=DA
∠BAO=∠ADP=90°
∴△ABO≌△DAP
∴AO=DP
∵在直角△AOE和直角△DPF中
∠AEO=∠DFP=90°
∠EAO=∠FDP
...
全部展开
延长BE交AD于点O
在正方形ABCD中,AB=AD
∵在直角△ABO和直角△DAP中
∠ABO=∠DAP
AB=DA
∠BAO=∠ADP=90°
∴△ABO≌△DAP
∴AO=DP
∵在直角△AOE和直角△DPF中
∠AEO=∠DFP=90°
∠EAO=∠FDP
AO=DP
∴△AOE≌△DPF
∴AE=DF
收起
正方形判定和性质在正方形ABCD中,P是CD上一点,BE⊥AP于E,DF⊥AP于F,求证:AE=DF.
正方形的性质和判定
正方形性质及判定
正方形的判定性质
初中数学正方形的性质和判定
正方形的性质和判定完整
菱形的性质判定1.如图,在菱形ABCD中,E为AD的中点,EF交AB的延长线与F.求证:AB与EF互相平分已知:P是正方形ABCD对角线BD上一点,PE⊥DC,PE⊥BC,E,F分别为垂足,求证:AP=EF
正方形 定义,性质,对称性,判定
正方形的判定性质是什么?
见图.在四棱锥P-ABCD中底面ABCD是正方形
在四棱锥P-ABCD中,底面ABCD是正方形,证明:PA//平面EDB
四边形的性质和判定正方形 梯形 平行四边形 菱形 它们的所有性质和判定
平行四边形、矩形、菱形、正方形的性质和判定(4)
请问一下平行四边形,矩形,菱形,正方形的判定和性质
平行四边形、矩形、菱形、正方形、等腰梯形的判定和性质
正方形的定义和性质,还有判定是什么?
菱形,梯形,矩形,正方形的性质和判定
正方形判定和定义