f(x)是矩阵A的特征多项式,证明f(A)=O?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 12:45:29

f(x)是矩阵A的特征多项式,证明f(A)=O?
f(x)是矩阵A的特征多项式,证明f(A)=O?

f(x)是矩阵A的特征多项式,证明f(A)=O?
这是Cayley-Hamilton定理, 随便找本教材, 里面一般都有

f(x)是矩阵A的特征多项式,证明f(A)=O? 设A,B是N阶方阵,f(x)是B的特征多项式,证明f(A)是可逆矩阵的充分必要条件是A与B没有相同的特征值. 设A,B是N阶方阵,f(x)是B的特征多项式,证明f(A)是可逆矩阵的充分必要条件是A于B没有相同的特征值. 已知实n阶矩阵A具有n个两两不同的特征值.f(λ)=|λE-A| 是A的特征多项式.证明:矩阵f(A)=0大哥,帮我看一个! 设矩阵A的特征多项式为f(λ),则f(A)=0怎么证明?这定理叫什么名字 线性空间设A是n阶矩阵,其特征多项式f(人)=|人E-A|,g(人)是一个多项式,如果(f(人),g(人))=1,证明g(A)是可逆矩阵,并且其逆是A的多项式.我不是很知道为什么没有公共根,g(A)的特征值就都不为0了。 若A是n阶矩阵,f(x)是一个常数项不为零的多项式,且满足f(A)=0,证明:A的特征值一定 若A是n阶矩阵,f(x)是一个常数项不为零的多项式,且满足f(A)=0,证明:A的特征值一定全部为0. 线性代数的问题,设矩阵A的特征多项式为f(λ),则f(A)=0这个定理这么证明为什么不对?f(λ)=|A-λE|所以f(A)=|A-AE|=0 多项式 矩阵 如果矩阵满足多项式f(A)=O,那么是不是所有满足多项式f(x)=0的值都是矩阵A的特征值?怎么证明?或者举个反例? 难题,线性代数,矩阵最小多项式f:R^3-> R^3矩阵A=2 0 0 1 0 1 1-2 31.求特征多项式,最小多项式2.问f是对角矩阵时,存不存在R^3的基,证明答案.第一个需要答案,第二问要过程.第二问要详细的过程 求一矩阵分析子空间秩的证明题解(用Hamilton-Cayley定理证明)求一矩阵分析子空间秩的证明题解:记F[x]是系数在数域F中的关于未定元x的多项式全体之集.假设A是F上的n阶方阵.记F(nxn)的子空 高等代数哈密顿凯莱定理:设f(λ)=|λE-A|是A的特征多项式,则f(A)=零矩阵,这还用那么麻烦(搞什么伴随矩阵)的证明吗,直接带入A-A不就为零啊,还有这个这么明显的废话定理有什么用啊? 请证明因式定理:如果f(a)=0,那么(x-a)是多项式f(x)的因式 设a是方阵A的特征值,f(x)是x的多项式,证明:f(a)是f(A)的特征值. 关于矩阵最小多项式和特征多项式的关系设A是数域P上n级方阵,m(λ),f(λ)分别是A的最小多项式和特征多项式.证明:存在正整数t,使得f(λ)|m^t(λ).我是把两个式子都表示成一次因式的方幂的乘积, 设函数f(x)是二次多项式,证明f(x)=f ''(a)/2*(x-a)^2+f '(a)(x-a)+f(a) 高等代数的一道题目,涉及多项式互素和矩阵运算,矩阵的秩.设数域F上的多项式h(x)和g(x)互素,即(h(x),g(x))=1,又f(x)=h(x)g(x),若存在n阶实矩阵A使得f(A)=0,证明:r (g(A)) + r (h(A)) = n. A、B都是n阶Hermite 矩阵,证明:A与B相似的充要条件是它们的特征多项式相同