证明二元函数可微.设 lim [f(x,y)-f(0,0)+2x-y]/√x^2+y^2=0证明f(x,y)在点(0,0)处可微.(x,y)→(0,0)答案中有一步看不懂,他说:f(x,y)-f(0,0)+2x-y=o(ρ),(当(x,y)→(0,0)时)可以得到f(x,y)在点(0,0)处可微,请问怎么

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 07:54:55

证明二元函数可微.设 lim [f(x,y)-f(0,0)+2x-y]/√x^2+y^2=0证明f(x,y)在点(0,0)处可微.(x,y)→(0,0)答案中有一步看不懂,他说:f(x,y)-f(0,0)+2x-y=o(ρ),(当(x,y)→(0,0)时)可以得到f(x,y)在点(0,0)处可微,请问怎么
证明二元函数可微.
设 lim [f(x,y)-f(0,0)+2x-y]/√x^2+y^2=0证明f(x,y)在点(0,0)处可微.
(x,y)→(0,0)
答案中有一步看不懂,他说:f(x,y)-f(0,0)+2x-y=o(ρ),(当(x,y)→(0,0)时)可以得到f(x,y)在点(0,0)处可微,请问怎么得出可微的?

证明二元函数可微.设 lim [f(x,y)-f(0,0)+2x-y]/√x^2+y^2=0证明f(x,y)在点(0,0)处可微.(x,y)→(0,0)答案中有一步看不懂,他说:f(x,y)-f(0,0)+2x-y=o(ρ),(当(x,y)→(0,0)时)可以得到f(x,y)在点(0,0)处可微,请问怎么
二元函数可微的定义是函数z=f(x,y)在点(x,y)的全增量Δz=f(x+Δx,y+Δy)-f(x,y)可以表示成Δz=AΔx+BΔy+o(ρ).令x=y=0,则全增量Δz=f(Δx,Δy)-f(0,0),将符号Δx,Δy换成x,y来表示,则该题中(x,y)→(0,0)时函数f(x,y)的Δz=f(x,y)-f(0,0)=-2x+y+o(ρ),符合定义的要求,所以f(x,y)在点(0,0)处可微.

二元函数f(x,y)是否可微?二元函数f(x,y)满足:对x偏导lim【f'(x,y)-f'(0,0)】=0 x->0,且对y偏导lim【f'(x,y)-f'(0,0)】=0 y->0;是否能推导出二元函数f(x,y)可微?为什么?给出证明更正二元函数f(x,y)满足:对x 设二元函数f(x,y)满足丨f(x,y)丨≦x²+y².证明f(x,y)在(0,0)可微. 证明二元函数可微.设 lim [f(x,y)-f(0,0)+2x-y]/√x^2+y^2=0证明f(x,y)在点(0,0)处可微.(x,y)→(0,0)答案中有一步看不懂,他说:f(x,y)-f(0,0)+2x-y=o(ρ),(当(x,y)→(0,0)时)可以得到f(x,y)在点(0,0)处可微,请问怎么 设函数f(x)在(a,+∞ )上可导,且lim(x->+∞ )(f(x)+f'(x))=0,证明:lim(x->+∞ )f(x)=0 设函数f(x)有界,又lim(x→∞)g(x)=0,证明:lim(x→∞)f(x)g(x)=0(证明过程) 设F(x)、G(x)是任意两个二次连续可微函数,证明: 设函数f(x)可导,则 lim f(1+x)-f(1)/3x x-0 f(x)是定义在(0,+∞)上的连续可微函数,且lim(x->+∞)(f(x)+f ' (x))=0,证明lim(x->+∞)f(x)=0 设函数f(x)在(0,1]内连续可导,且lim(x趋向于0+)(√x)f`(x)存在,证明f(x)在(0,1]内一致连续我知道要把问题归结到证明lim(x趋向于0+)f(x)存在,如何由lim(x趋向于0+)(√x)f`(x)存在导出lim(x趋向于0+)f(x)存在, 请问一道关于证明可导偶函数的导函数是奇函数的问题证明:设f(x)为可导的偶函数,即f(x)=f(-x);同时g(x)为f(x)的导函数.对于任意的自变量位置x,有 g(x)=lim(dx→0){[f(x+dx) - f(x)]/dx}g( -x)=lim(dx→0){[f 设f(u,v)为二元可微函数,z=f(x^y,y^x),求x,y的偏导 设函数f(x)满足下列条件:(1)f(x+y)=f(x)·f(y)对一切x,y属于R(2)f(x)=1+xg(x),而lim g(x)=1 (x趋于0)试证明f(x)在R上处处可导,且f'(x)=f(x) 设函数f(x)在点x可导,则 lim(△x->0) f(x+Δx)-f(x-Δx)/Δx=? 设函数f(x)在点x=a可导,且f(a)不等于0,求lim(x趋向无穷)[(f(a+1/x)/f(a)]^x 设函数f(x)在(01]上连续,且极限lim->0+f(x)存在,证明函数f(x)在(0,1]上有界 设函数f(x)可导,且f′(3)=2,求lim(x→0)[f(3-x)-f(3)]/2x 设函数 f(x)可导,且f'(3)=2,求 x->0 lim [f(3-3)-f(3)]/2x 设函数f(x)在点0可导,且f(0)=0,则lim(x→0)[f(x)/x]=