求证明:2的平方根是无理数

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 21:04:50

求证明:2的平方根是无理数
求证明:2的平方根是无理数

求证明:2的平方根是无理数

假设根号2是有理数,则有根号2=P/Q(这是有理数的定义)
其中,P/Q互质
则有P^2/Q^2=2
P^2=2Q^2
只有2的倍数的平方才是偶数
所以P是偶数
令P=2S
则有4s^2=2Q^2
2S^2=Q^2
同理,Q也是偶数
既然P.Q都是偶数,与原来的P.Q互质矛盾
则根号2不是有理数.
所以...

全部展开

假设根号2是有理数,则有根号2=P/Q(这是有理数的定义)
其中,P/Q互质
则有P^2/Q^2=2
P^2=2Q^2
只有2的倍数的平方才是偶数
所以P是偶数
令P=2S
则有4s^2=2Q^2
2S^2=Q^2
同理,Q也是偶数
既然P.Q都是偶数,与原来的P.Q互质矛盾
则根号2不是有理数.
所以是无理数

收起

好像高中教材上就有哦~~
假设根号2是有理数,则有根号2=P/Q(这是有理数的定义)
其中,P/Q互质
则有P^2/Q^2=2
P^2=2Q^2
只有2的倍数的平方才是偶数
所以P是偶数
令P=2S
则有4s^2=2Q^2
2S^2=Q^2
同理,Q也是偶数
既然P.Q都是偶数,与原来的P.Q互质矛盾
...

全部展开

好像高中教材上就有哦~~
假设根号2是有理数,则有根号2=P/Q(这是有理数的定义)
其中,P/Q互质
则有P^2/Q^2=2
P^2=2Q^2
只有2的倍数的平方才是偶数
所以P是偶数
令P=2S
则有4s^2=2Q^2
2S^2=Q^2
同理,Q也是偶数
既然P.Q都是偶数,与原来的P.Q互质矛盾
则根号2不是有理数.
所以是无理数
证明完毕

收起